
Frontiers in Psychiatry 01 frontiersin.org

Digital twins and the future of 
precision mental health
Michael Spitzer 1†, Itai Dattner 2† and Sigal Zilcha-Mano 1*†

1 Department of Psychology, University of Haifa, Haifa, Israel, 2 Department of Statistics, University of 
Haifa, Haifa, Israel

Science faces challenges in developing much-needed precision mental health 
treatments to accurately identify and diagnose mental health problems and the 
optimal treatment for each individual. Digital twins (DTs) promise to revolutionize 
the field of mental health, as they are doing in other fields of science, including 
oncology and cardiology, where they have been successfully deployed. The 
use of DTs in mental health is yet to be explored. In this Perspective, we lay the 
conceptual foundations for mental health DTs (MHDT). An MHDT is a virtual 
representation of an individual’s mental states and processes. It is continually 
updated from data collected over the lifespan of the individual, and guides mental 
health professionals in diagnosing and treating patients based on mechanistic 
models and statistical and machine learning tools. The merits of MHDT are 
demonstrated through the example of the working alliance between the therapist 
and the patient, which is one of the most consistent mechanisms predicting 
treatment outcome.
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1. Introduction

Science faces challenges in developing much-needed precision mental health treatments. In 
this Perspective, we discuss the potential of using digital twin (DT) technology for advancing 
clinical research and treatment of mental health. Although the concept of the DT has existed for 
more than a decade, there still is confusion about what it is (1). We begin with a brief description 
of DTs, then we discuss potential applications of the technology in mental health.

1.1. Digital twin

A DT is a virtual entity designed to represent, in as much detail as possible, a physical one. 
A virtual representation of this type makes possible better design and control of physical entities 
over their lifetime. The DT concept has received growing attention both in academia and 
industry (2–5), and a recent Gartner survey revealed that DTs are entering mainstream use (6). 
Although a variety of disciplines have adopted DTs, there is no generally accepted definition of 
DT, each discipline providing its own definition. For example, in agriculture, DT is considered 
“a dynamic virtual representation of a physical object or system, usually across multiple stages 
of its lifecycle, that uses real-world data, simulation, or machine learning models combined with 
data analysis to enable understanding, learning, and reasoning. DT can be used to answer 
what-if questions and should be able to present insights in an intuitive way” (7). The main 
differentiator of DTs from typical simulators or recommendation systems in agriculture (8) is 
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that typical simulators are offline and recommendation systems are 
usually not based on physical models but only statistical/machine 
learning algorithms. By contrast, DTs span the lifecycle of an 
individual or process, are updated from real data, and use physical and 
mechanistic models, statistical/machine learning, and artificial 
intelligence (AI) to provide evidence-based guidance for the user. The 
above notions derived from industry and agriculture seem sufficiently 
general to fit other domains, such as mental health.

1.2. Potential benefits of DT in mental 
health?

DT equips its users with advanced decision-making capabilities 
using a continually updated virtual representation of reality. In mental 
health treatment, advanced capabilities may include the ability to design 
better treatments by simulating potential therapeutic scenarios before 
applying the treatment in reality, and providing online feedback and 
recommendations to the therapist for optimizing a treatment within a 
treatment period. DTs can produce what precision mental health needs: 
forecast deterioration in mental health and predict the process and 
outcome of mental health interventions. Based on this knowledge, DT 
can determine the most effective treatment for any given individual. It 
may sound like science fiction, but the technology is already in place. In 
mental health, DTs can produce patient-specific predictions for 
diagnosis, prognosis, treatment selection, and treatment tailoring.

DTs reproduce an individual’s functioning and behavior by 
generating real-time replicas of individual emotions, cognitions, and 
behaviors, updated in real time using data collected from various 
sources (e.g., sensors, questionnaires). This individual-specific 
knowledge can serve to monitor mental health status, determine 
clinical diagnosis, and issue alarms when intervention is needed. 
Statistical and physical mechanistic models make possible robust, 
interpretable, and reproducible analysis of mental health data and can 
infer missing states and parameters. A DT can serve to test various 
types of treatments that differ in their mechanisms of action and 
identify the one showing the best outcome for a given individual. 
Virtually testing different treatments has the advantage of cutting long, 
expensive trial-and-error processes, experimenting with various 
treatments until one is found that fits the individual’s characteristics 
and is effective. The DT can not only identify the most effective 
treatment for the individual, but also formulate recommendations on 
how to tailor the treatment to the patient based on data collected in 
real time.

In general, a DT applied in the mental health domain should 
provide the following functions in real time:

Monitoring: tracking the mental state of individuals and 
informing them about changes in it. With the patients’ informed 
consent, they can present the results to stakeholders (e.g., HMOs), 
issuing alarms when detecting a deterioration. DTs can signal the 
need for preventive intervention when deterioration is expected to 
persist, and predict the potential effect of a stress-evoking future 
event, such as a test for a student or deployment for a soldier.

Diagnostics: diagnosing mental health disorders and 
comorbidities, and tracking their development and fluctuations.

Prognostics: predicting the course of underlying processes by 
combining real and synthetic data with empirical and mechanistic 
models, using online simulations and root-cause analyses.

Guidance: indicating actions to take, for example, recommending 
the optimal treatment and the most effective techniques to use with a 
patient based on all the available options.

A useful DT should be a virtual entity reflecting in detail the 
mechanism and dynamic nature of the patient’s mental health and 
pathophysiology of disturbance in mental health, as well as the 
therapeutic processes and patient-therapist quality of relationship in 
the therapy room. A virtual representation can equip both patient 
and therapist with powerful tools enabling optimal treatment based 
on transparent reasoning and probabilistic considerations, 
generalizing insights learned in the past to new situations, not 
necessarily encountered before for a particular patient or therapist.

DTs have been successfully used in areas where validated physical 
models of the phenomenon of interest exists, such as industrial or 
agricultural applications. Mature and validated physical models 
together with data (e.g., from IoT sensors) and machine learning and 
AI algorithms have formed an ideal environment for the deployment 
of DTs. The question is whether DT technology is relevant for the 
mental health domain where at least some of the phenomena of 
interest are behavioral, and physical models are less common. In the 
next section we  point out an example where a positive answer is 
plausible and lay the conceptual foundations for the promising 
approach of Mental Health DTs.

2. Mental health digital twins

Mental health is a state of mental wellbeing that enables people to 
cope with the stresses of life, realize their abilities, learn and work well, 
and contribute to their community (WHO). Mental health is 
determined by a complex interplay between individual, social, and 
structural stresses. The physical state-space representing the actual 
state of the mental health of an individual is a complex high-
dimensional space that typically cannot be fully observed or directly 
measured and modeled. Thus, developing an exact or even 
approximate virtual replica of the entire mental health of an individual 
is an ambitious long-term research goal, if it is feasible at all.

Consider major depressive disorder (MDD), the leading cause of 
disability worldwide and a main contributor to the overall global 
burden of disease (9). Hundreds of active treatments are available for 
MDD, differing in their underlying mechanisms and how they are 
theorized to drive therapeutic change. But they do not appear to differ 
in their efficacy, which is around 50% for the “average patient” (10). Yet, 
some subpopulations of patients show great ability to benefit from a 
given treatment, whereas others are less able to do so (11). Despite 
advances in mental health interventions, there has been little change in 
overall treatment efficacy in the past five decades (10). Further focusing 
our mental health target to “twin,” we consider the therapeutic alliance 
between the patient and therapist in psychotherapy, which is one of the 
most consistent predictors of treatment outcomes in psychotherapy 
research (12, 13). We refer to the therapeutic alliance as the physical 
“assets” for which “twinning” may be possible.

2.1. Therapist-patient alliance digital twin

The therapist-patient alliance is the relationship that forms 
between therapist and patient during treatment, potentially a 
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collaborative relationship built on mutual trust and understanding. 
Patient come to treatment with different capacities to realize this 
potential, which may change in the course of treatment and bring cure 
in itself. This alliance is considered to be a key factor in the success of 
the therapy because it allows the therapist to understand the patient’s 
needs and motivations, and patients to feel comfortable and safe in 
discussing and working through their challenges and goals. A 
common definition of alliance is the one proposed by Bordin (14), 
emphasizing three main aspects: agreement on the goals and tasks of 
therapy, a bond between therapist and patient, and a shared 
understanding of the therapeutic process. These aspects can work 
together to create a therapeutic environment conducive to change 
and growth.

Decades of empirical research suggest that a stronger alliance is 
significantly associated with better treatment outcomes (15). Recently 
(16), the importance of disentangling two distinct components of 
alliance has been demonstrated: the patients’ general tendency to form 
satisfying relationships with others, which affects also the relationship 
with the therapist (trait-like component of alliance), and the changes 
in such tendencies through interaction with the therapist (state-like 
component of alliance). The former enables treatment to be effective; 
the latter makes alliance therapeutic.

In view of the above scientific findings, developing an Alliance 
Digital Twin (ADT) seems to be a timely and useful technology to 
have at hand. The ultimate goal of ADT technology is to assist the 
therapist in improving the therapeutic alliance and consequently, 
treatment outcome. To demonstrate the great potential of ADT, 
we conceptualize a hypothetical example based on established and 
well-studied ingredients. Our goal is to demonstrate a concept; 
therefore, we made the example as simple as possible, but not simpler.

Following Kapteyn et  al. (17), we view the physical asset (the 
alliance) and its DT as two coupled dynamical systems, evolving over 
time through their respective state spaces. Note that there are at least 
two time scales to consider: (a) session time (possibly weekly), and (b) 
time within a session, where resolution can be as fine as minutes or 
seconds. We use a probabilistic graphical model (dynamic Bayesian 
network with the addition of decision nodes) to define the elements 
comprising this coupled dynamical system over sessions of therapy, 
and the interactions that need to be modeled in the DT. Figure 1 
shows a visual representation of the probabilistic graphical model for 
the asset-twin system.

The time index in Figure  1 corresponds to consecutive 
therapeutic sessions that take place over, say, consecutive weeks. 
The conditional independence structure defined by the graph allows 
us to factorize joint distributions over variables in the model (nodes 
in the graph can, in general, represent multivariate random 
variables) and for end-to-end uncertainty quantification and 
principled analysis, prediction, and decision-making. The 
methodology also allows predicting the dynamics ahead of time to 
make the optimal decision. For example, in Figure 1, in the dynamic 
network from time step 3 in the dashed rectangle, no observations 
about the physical states are made, but only forecasts in the digital 
space are generated, so an optimal decision can be  made in 
time step 2.

The first stage in designing the ADT is to define the components 
of the graph depicted in Figure 1 and its structure by a topological 
reorganization of the graph, as will be required for the use case at 
hand. To this end, specific physical quantities to be measured must 

be defined. Natural candidates for that purpose can be motivated 
by existing psychotherapy research. We consider three quantities: 
(a) the efficacy and effectiveness of treatment, which in the case of 
depression can be  measured by the Hamilton Rating Scale for 
Depression (HRSD) (18); (b) the quality of the therapeutic alliance 
in each session, measured by self-report questionnaires completed 
by the patient and the therapist, such as the Working Alliance 
Inventory (WAI; (19)); and (c) the presence and magnitude of 
ruptures in the alliance measured during treatment, for example, by 
nonverbal synchrony using quantification of motion energy (20). 
The theoretical and clinical literature, as well as empirical studies, 
suggests that one of the most promising processes underlying the 
effect of alliance on outcome are episodes of ruptures and repair in 
the alliance (21). Ruptures are defined as deterioration or tension 
in the alliance, manifested by a disagreement between the patient 
and therapist on treatment goals, lack of collaboration on 
therapeutic tasks, or strain on their emotional bond (21, 22). 
Ruptures are an integral part of treatment and take place in 
91%–100% of therapy sessions. When resolved, ruptures are 
associated with better treatment outcomes; when not, they can 
become a risk for treatment failure, as manifested in patients’ 
deterioration and dropout. To resolve a rupture, therapists need to 
first identify it, then implement certain resolution strategies to 
repair it. Therapists often appear to miss ruptures occurring during 
treatment, relative to those found in observer-based coding (23), 
which further motivates the development of a technology allowing 
for real-time detection of ruptures. For example, a recent study (24) 
demonstrated that nonverbal synchrony, characterized by motion 
synchronization of therapists and patients during a session, can 
be used as a marker of alliance ruptures. The potential merits of 
focusing on patient-therapist synchrony in psychotherapy are 
discussed in the literature (25).

Summarizing the quantities of interest:

 - Assessment of treatment efficacy and effectiveness measured by 
HRSD values of patients throughout the therapy at the beginning 
of each session (18).

 - Strength of the alliance in each session, measured at the end of 
the session by WAI (19).

 - Ruptures occurring during sessions, measured by nonverbal 
synchrony by quantification of motion energy (20) and tracked 
during each session with a resolution of minutes.

These quantities can be used to construct the ADT as follows. The 
physical states (S) of the physical asset we are “twinning” is the quality 
of the alliance. The observational data (O) we have are the HRSD, WAI, 
and nonverbal synchrony. The digital states (D) are the HRSD and WAI 
values predicted by a pre-trained statistical/machine learning model 
that predicts these quantities using current and forecasted values of 
nonverbal synchrony measured during sessions. Forecasting future 
nonverbal synchrony values can be done, for example, using mechanistic 
models of synchrony (26, 27) characterizing the mechanism and 
dynamics underlying the motion of therapist and patient during the 
session. Such physical models can be fitted in real time to motion data 
to simulate future scenarios of synchronization levels or going in and 
out synchronization, which, in turn, may indicate an evolving rupture, 
which if addressed in real time, can strengthen the alliance and result in 
better treatment outcome. Thus, the digital state consists of a 
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mechanistic model, real-time estimates of its parameters that have a 
psychological meaning, and a pre-trained machine learning model. The 
learning model takes the values predicted by the mechanistic model and 
infers psychotherapy quantities of interest (Q) describing the assets, 
which are estimated by model outputs such as confrontational and 
withdrawal ruptures, the quality of the alliance, and the overall efficacy 
of treatment. The actions or decisions (U) stand for the intervention 
carried out by the therapist within or between sessions to influence the 
physical asset, namely, improving the alliance. Finally, the reward (R) 
quantifies the overall performance of the asset-twin system that can 
be achieved by measuring the improvement in HRSD from session 
to session.

The definition of the above components of the asset-twin system 
is the first stage in the design and development of the ADT. In 
particular, in defining the digital state, we  must consider what 
information is sufficient to support the use case at hand. Typically, the 
digital state-space is only a subset of the complex high-dimensional 
physical state-space, consisting of (simple but not simpler) models 
capturing variations in the physical asset that are relevant for 
diagnosis, prediction, and decision-making in the application of 
interest (17). Scientific methodologies developed in recent years for 
statistical learning of dynamical systems and for analyzing big data 
and measurement error models (28–39) are highly relevant for 
developing the computational models and statistical learning 
algorithms comprising the ADT; see also the recent review and 
references therein (40).

The above DT conceptualization allows for dynamically updating 
the computational models and integrating them within the data-
driven analysis and decision-making feedback loop. The ADT can 
be validated in lab and clinical experiments.

3. Additional considerations in 
building MHDTs

Developing a DT requires following best statistical practices for 
data collection (observational and controlled experiments) and 

management (cleansing, validation, handling missing data, 
preprocessing). Another key element is the development of AI 
techniques that integrate mechanistic models describing the dynamics 
of mental health and therapeutic processes of patients going through 
treatment with advanced statistical/machine learning methods applied 
to various data sources such as motion, sound, social media activity, 
self-reports, etc. Such models can maximize interpretability, 
generalizability, and robustness by integrating data-driven results with 
conceptual models of psychopathology and psychotherapy [e.g., (41)], 
and accumulating empirical knowledge. They enable what-if analysis 
in real time by generating probable future paths of the underlying 
mental health dynamics. This, in turn, allows choosing the optimal 
intervention at a given time for individual patients. Our increasing 
capacity to analyze, integrate, and exploit many sources of high-
dimensional data has firmly established our ability to use innovative 
data science techniques in constructing an individual’s DTs. The 
potential of implementing innovative data science advances to the 
field of mental health has been firmly established in recent years (42).

Below we  describe the steps needed to develop, validate, and 
maintain ADT to characterize both individuals (patient, therapist) and 
therapeutic processes. We  describe typical steps required when 
developing advanced technology based on domain knowledge, data, 
and statistical/machine learning algorithms.

Step  1. Data collection. The development of DT technology 
requires vast heterogeneous multidomain and multiscale spatiotemporal 
mental health data. Both data collected automatically and reported by 
individuals using ecological momentary assessments (EMA) methods 
can be  included. Examples of automatically collected data include 
physiological measures gathered moment by moment using wearable 
technology, social media activity, sleep and motion patterns, acoustic 
vocal indices, etc. Data are handled remotely using cloud storage to 
enable real-time processing, and stored using HIPAA-compliant 
methods. Observational data and controlled experiment data should 
be  approached differently. Indeed, for better repeatability, 
reproducibility, and generalization of research results, the data 
generation process of each data source should be well understood and 
rigorous protocols for data collection should be developed. Sources of 

FIGURE 1

Probabilistic graphic model for the ADT, adapted from Kapteyn et al. (17). The upper path of the graphical model represents the time evolution of the 
physical asset states, denoted by S; the lower path represents the time evolution of the digital states, denoted by D. The graphical model encodes the 
coupling over time between an asset and its DT. At each time point, we measure the physical asset and this information flows into the DT denoted by 
O. The observational data are used to update the digital states D and the models comprising the DT, which, in turn, are used to predict quantities of 
interest Q. Then, based on model predictions a decision or control input U is chosen and applied to the physical asset. The above quantities and 
actions influence the reward denoted by R.
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statistical measurement error, bias, and variance should be studied and 
controlled if possible. Some examples are between and within (over 
time) bias and variance in sensors, individual, domain, and environment 
conditions. In particular, when learning dynamical systems is of interest, 
appropriate methodologies for design of experiments should be used 
given the underlying dynamic processes and the different time scales 
involved as discussed above.

Step  2. Data management. The development of DTs requires 
design and implementation of data pipelines in which the data flow 
from measurement (sensors, other) of the physical entity, to the virtual 
representation in the DT brain, resulting in alerts and recommendations 
for real-time or future interventions, spanning the life cycle of the 
physical entity or processes. Such data pipelines should be robust to 
be safely deployed in production environments, but flexible enough to 
adapt to new process, data, and algorithm requirements. In both 
research and production environments, the data pipelines should 
perform data cleansing, validation, and preprocessing. Ideally, such 
pipelines and processes should be  fully automated, especially in 
production environments to allow for scaling. Specifically, the research 
stage usually starts with data preparation for analysis and exploratory 
data analysis (EDA). Data preparation typically includes data cleansing, 
validation, and preprocessing (normalization, transformations, baseline 
correction, manual and automatic outlier detection, handling missing 
data, etc.). In EDA, a variety of methods can be used, such as model-free 
data mining (e.g., association rules (43)), unsupervised methods (e.g., 
clustering (44)), fuzzy sets, rule-based reasoning, as well as the 
development of statistical and mathematical models characterizing the 
data generation process at all spatiotemporal scales. This step results in 
data pipelines and processes enabling advanced analysis and the 
development of physical/mechanistic models, statistical/machine 
learning, and AI models and algorithms.

Step  3. Modeling. Powerful DTs are based on modeling (e.g., 
mathematical, statistical, and symbolic) the dynamics of the physical 
entity within its environment. Such models have recently been developed 
by integrating statistical/machine learning and AI algorithms with 
mechanistic models describing the dynamics of the underlying process 
of interest. These models allow more interpretable inferences and 
predictions when applied to the data streamed into the DT. They also 
allow performing what-if analysis in real time by generating probable (in 
a well-defined probabilistic sense) future paths for the underlying 
dynamics. This, in turn, allows choosing the optimal intervention at a 
given time for a particular individual. For instance, a model may focus 
on predicting mental health diagnosis or specific clusters of symptoms 
both at the between-individuals and the within-individual levels (e.g., 
labile affect, maladaptive interpersonal interactions, adverse behaviors, 
etc.). Furthemore, application of transfer learning and domain adaptation 
tools is crucial for generalizing lab results to the field.

4. Summary

The modeling techniques mentioned above are natural advances to 
the existing state-of-the-art supervised and unsupervised machine 
learning approaches that have recently been used to identify mental 
health markers. Indeed, the purpose of supervised learning is to develop 
a model where both the mental health diagnosis (e.g., MDD) and 
symptoms (covariates) are given, so that the model can make a prediction 
of the diagnosis in the future, when only the features are given. For 

example, supervised machine learning identifies pre-specified features 
that are associated with MDD symptom severity. Unsupervised learning 
uses statistical algorithms to uncover structures in the data, such as 
similarities and dissimilarities between individuals sharing the same 
diagnosis. One of the most promising examples of such an approach is 
the identification of distinct biotypes of a given mental health disorder, 
like MDD, by parsing the heterogeneity contained in markers of MDD, 
enabling detection of biologically derived subgroups with unique 
psycho-socio-biological profiles. Both machine learning approaches have 
the potential to contribute to the understanding of MDD 
pathophysiology, they have complementary limitations: supervised 
methods are limited by the accuracy of the prior knowledge they rely on, 
and unsupervised methods by the potential for unclear or uninterpretable 
derivation of data-driven subtypes, which reduces their likelihood of 
being implemented in clinical practice. Given these complementary 
limitations, combining the two with mechanistic models into a hybrid 
model (45) can maximize their ability to yield meaningful new 
knowledge on mental health biotypes. Hence, to maximize 
interpretability and generalizability, the data-driven results are integrated 
with commonly used conceptual models of psychopathology and 
psychotherapy. Current ML approaches implemented in the field of 
mental health focus on classifying and predicting markers of mental 
health, but their solutions remain uninterpretable. ADT would retain 
prediction accuracy and at the same time endow these models with 
explanatory features. Validation of such a technology can be carried out 
in and out of the lab, to be tested with actual people experiencing stress.

Finally, as with any new technology, important details remain to 
be resolved, and challenges to be addressed (46), including ethical 
considerations of patient safety and privacy (47); methodological and 
technical challenges in the deployment and maintenance of the DTs 
in and out of the lab; successful adaptation to new situations not 
encountered before; and continuous learning and improvement of 
performance. Digital twins in mental health can serve as a vital link 
between basic science and real-world applications, providing 
personalized and efficient solutions that foster wellbeing, taking 
advantage of the digital revolution.
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