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Abstract 

Background: Comorbidity between posttraumatic stress disorder (PTSD) and major depressive 

disorder (MDD) was commonly overlooked by studies examining resting-state functional 

connectivity (rsFC) patterns in PTSD. The current study used a data-driven approach to identify 

rsFC biomarkers to (a) differentiate PTSD (with or without MDD) from trauma-exposed healthy 

controls (TEHCs), (b) compare PTSD alone with comorbid PTSD+MDD, and (c) explore the 

clinical utility of the identified biomarkers by testing their associations with clinical symptoms and 

treatment response.  

Method: Resting-state magnetic resonance images were obtained from 51 individuals with PTSD 

alone, 52 with PTSD+MDD, and 76 TEHCs. Fifty-five of the 103 PTSDs were enrolled in 

prolonged exposure treatment. A support vector machine (SVM) model was used to identify rsFC 

biomarkers differentiating PTSD (with or without MDD) from TEHCs, and PTSD alone from 

PTSD+MDD. The associations between the identified features and symptomatology were tested 

with Pearson correlations.  

Results: The SVM models achieved 70.6% accuracy in discriminating between PTSD and TEHCs, 

and 76.7% accuracy in discriminating between PTSD alone and PTSD+MDD for out-of-sample 

prediction. Within-network connectivity in the executive control network, prefrontal network, and 

salience network discriminated PTSD from TEHCs. The basal ganglia network played an important 

role in differentiating PTSD alone from PTSD+MDD. PTSD scores were inversely correlated to 

within-executive control network connectivity (p<.001), and executive control network connectivity 

correlated positively with treatment response (p<.001).   

Conclusion: Results suggest that unique brain-based abnormalities differentiate PTSD from TEHC 

and PTSD from PTSD+MDD, and demonstrate clinical utility in predicting levels of 

symptomatology and treatment response.  
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Posttraumatic stress disorder (PTSD) is a debilitating condition commonly observed in 

individuals following traumatic exposure, with estimated lifetime prevalence of 6.8% (1). PTSD is 

highly heterogeneous (2) and frequently comorbid with major depression disorder (MDD) (3), 

complicating our ability to identify its brain mechanisms and identify novel therapeutic targets. 

Accumulating resting-state functional connectivity (rsFC) studies implicate altered within-network 

connectivity in the salience network (SN), default mode network (DMN), executive control network 

(ECN), as well as between these networks (4,5). Within the SN, which typically includes the 

anterior cingulate cortex (ACC) and anterior insula, studies have found enhanced connectivity 

between amygdala and insula nodes in individuals with PTSD relative to trauma-exposed (TEHC) 

and non-trauma exposed healthy controls (HC) (5–7). It was hypothesized that such enhanced 

connectivity attests to hypervigilance (6,7), whereas decreased connectivity between DMN nodes 

(e.g., medial prefrontal cortex [PPC], precuneus, the ventromedial prefrontal cortex [vmPFC], and 

hippocampus) in individuals with PTSD (5,8,9) reflects depersonalization/derealization symptoms 

(10). It has been further suggested that these altered rsFC patterns may represent neurobiological 

correlates of increased salience processing and hypervigilance, at the cost of awareness of internal 

thoughts and autobiographical memory in PTSD (4). Individuals with PTSD also showed decreased 

connectivity within the ECN (or frontal parietal network, which includes portions of the lateral 

prefrontal cortex and posterior parietal cortex), potentially representing diminished emotion 

regulation abilities (i.e., inability to downregulate negative emotions) (11,12).  

Although the preponderance of data supports a view of PTSD as being associated with 

altered within- and between-network connectivity in SN, DMN, and ECN, divergent findings have 

also been reported (4). Within the SN, connectivity between the amygdala and dorsal anterior 

cingulate (dACC) has been shown in various studies to be higher (13), lower (6), or unaltered (7) in 

individuals with PTSD compared to controls (TEHC and HC). Both higher (5,14) and lower (8) 

between-network connectivity of DMN nodes, such as the PCC/precuneus, and the SN have been 

demonstrated in PTSD compared to controls. Some studies have reported reduced connectivity 
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between amygdala and the inferior frontal gyrus (IFG), vmPFC, and middle frontal cortex (6,13,14),  

whereas others found no differences in connectivity between the amygdala and vmPFC pathway 

(7,15). 

A potential reason for these divergent findings might be the high comorbidity rates between 

PTSD and MDD, which have been largely overlooked by existing connectivity data analyses. PTSD 

and MDD co-occur in as many as 52% of cases (16,17), and this comorbidity is associated with 

significantly greater subjective distress and impairment than either condition alone (e.g., 7–10), 

demonstrating a more chronic course of impairment (18). These clinical differences suggest that 

corresponding underlying neurobiological differences may be present as well. Meta-analyses on 

connectivity abnormalities in MDD (19–22) suggest that MDD is characterized by 

hypoconnectivity within the ECN and between frontoparietal systems and parietal regions of the 

dorsal attention network (DAN). MDD was also associated with hyperconnectivity within the 

DMN, and with hyperconnectivity between ECN control systems and regions of the DMN. It is an 

open question whether individuals with PTSD+MDD show more connectivity abnormalities that are 

similar to those documented among individuals with MDD than do individuals with PTSD without 

MDD comorbidity.  

To date, only a few studies (23,24) have assessed whether individuals with PTSD+MDD 

exhibit connectivity differences relative to individuals with PTSD alone. Kennis et al. (23) found in 

PTSD+MDD vs. PTSD alone increased connectivity between subgenual and perigenual ACC, as 

well as decreased connectivity of the subgenual ACC with the thalamus. Yet this study focused on 

the insula and ACC as seed regions, and did not address potential alterations in pathways involving 

the nucleus accumbents (NAcc). Zhu et al. (24) found that PTSD+MDD, compared to PTSD alone, 

was associated with multifaceted functional connectivity alterations, including decreased 

connectivity across multiple amygdala and striatal-subcortical pathways. These findings suggest 

that individuals with comorbid PTSD+MDD may show dysfunctions that characterize both 
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individuals with PTSD and those with MDD, but it was not possible to draw definitive conclusions 

because of the small sample size.  

Little is known about the clinical utility of the altered within- and between-networks 

connectivity identified so far in the literature on PTSD. The few available findings suggest that 

rsFC of the PCC with the perigenual anterior cingulate and the right amygdala is associated with 

current PTSD symptoms, and that correlation with the right amygdala predicts future PTSD 

symptoms, but no treatment effect has been studied (25). Another study showed that neural circuitry 

changes may be associated with treatment response but did not investigate the ability of baseline 

biomarkers to predict treatment response (26). Closing this gap in the literature by investigating the 

clinical utility of identified biomarkers is of critical importance in the progress towards personalized 

PTSD treatments (27). 

To address these gaps in knowledge, the present study has the following four aims: (a) 

identify network connectivity differences distinguishing individuals with PTSD (with and without 

comorbid MDD) from TEHC; (b) identify network connectivity differences distinguishing 

individuals with PTSD without MDD from those with PTSD+MDD; (c) examine the clinical utility 

of the features identified through aims (a) and (b) by examining their associations with MDD and 

PTSD symptomatology; and (d) test the utility of the identified network connectivity features in 

predicting subsequent treatment outcome in a sub-sample receiving prolonged exposure (PE) 

therapy. These four aims are critical for developing a better understanding of the unique 

neuropathology of PTSD patients and to identify novel therapeutic targets.  

To identify the network connectivity features (aims (a) and (b)), the present study used a 

support vector machine (SVM) model, which is a multivariate pattern recognition machine learning 

(ML) technique especially well-suited for discriminating high-dimensional rsFC fMRI data. ML 

approaches have two main advantages over standard univariate analytical methods that are typically 

used in neuroimaging. First, the traditional approaches are based on average estimates of 
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differences at the group level. By contrast, ML approaches make possible inferences at the level of 

the individual rather than the group. In an effort to increase the translational applicability of the 

results to clinical practice where decisions are made about individual patients, not groups, there has 

been a recent shift toward the use of multivariate ML techniques (28–32). Findings based on ML 

approaches are expected to have higher translational applicability to everyday decision making in 

clinical practice. Second, ML approaches are more sensitive to differences that are subtle and 

spatially distributed by taking inter-regional correlations into account. Such spatially distributed 

patterns in the brain might be undetectable using group comparisons. Thus, ML approaches provide 

an optimal framework for investigating psychiatric disorders that affect a distributed network of 

regions (Nicholson et al., 2019; Orrù et al., 2012; Fu & Costafreda, 2013; Wolfers et al., 2015). 

Previous studies comparing traditional and ML approaches with group classification based 

on resting-state data suggest that ML approaches are more sensitive to the subtle and spatially 

diffuse alterations typically observed in psychiatric disorders, and therefore may be better suited to 

the development of a real-world clinical diagnostic tools, than are standard mass-univariate 

techniques (28). Previous studies suggest SVM ability to discriminate between trauma-exposed 

individuals and between trauma-exposed and non-traumatized healthy controls with high levels of 

accuracy (67.57% -91%) ( 40,42). Studies further suggest its ability to predict long-term response to 

antidepressant medication (21). 

Method  

Participants  

We combined data from three studies conducted at the New York State Psychiatric Institute 

(NYSPI). The studies were approved by the NYSPI Institutional Review Board, and all participants 

provided written informed consent after receiving an explanation of the procedures. rsFC fMRI was 

conducted in a total of 179 individuals: 51 with PTSD alone, 52 with PTSD+MDD, and 76 TEHCs. 
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Detailed inclusion and exclusion criteria for each study appear in Table S1, in the online 

supplements. Briefly, all participants met the DSM-IV-TR criterion A1 and A2 (35) or DSM-5 (36) 

PTSD criterion A for adult traumatic events. Clinical evaluators administered the Structured 

Clinical Interview for DSM-IV Axis I Disorders (SCID) (37) and the Clinician-Administered PTSD 

Scale (CAPS) (38) to establish psychiatric diagnoses and assess PTSD severity. All participants in 

the PTSD+MDD group, but not in the PTSD alone or TEHC, also met SCID DSM-IV or DSM-5 

criteria for a major depressive episode (35). Exclusion criteria for participants in the TEHC group 

consisted of current or past Axis I disorders, including substance use disorders and the use of any 

psychotropic medications. Exclusion criteria for all groups included any condition that would rule 

out MRI administration. 

A subsample of 55 patients with PTSD (33 PTSD-alone, 22 PTSD-MDD) underwent PE 

treatment conducted by one of two trained therapists adhering to a 10-week standard PE protocol 

(39). The detailed PE treatment protocol was described in Helpman et al. (40) and Zhu et al. (24). 

Seed-based functional connectivity analyses 

Neuroimaging data acquisition, preprocessing of imaging data, and seed-based functional 

connectivity analyses appear in the online supplements. rsFC analyses were carried out using a 

seed-based approach implemented in the CONN-fMRI Functional Connectivity toolbox v13(41). 

ROI-to-ROI connectivity analysis was performed using 43 ROIs previously identified as important 

in PTSD and MDD (see online supplements). The mean BOLD time series was computed across all 

voxels within each ROI. Bivariate regression analyses were used to determine the linear association 

of the BOLD time series between each pair of regions for each individual. The resultant correlation 

coefficients were transformed into z-scores using Fisher's transformation to satisfy normality 

assumptions.  
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Statistical Analyses 

Clinical Variables 

We used SPSS software (SPSS Inc. Chicago, IL, USA) for statistical analyses. T-tests were 

used to test the differences in clinical symptoms and age between groups. Chi-square test was used 

to analyze differences in gender and race. 

Machine Learning Analysis: SVM 

Linear kernel SVM has emerged as one of the most popular supervised machine learning 

(ML) methods, with learning algorithms aimed at classification used in neuroimaging (42) and 

psychiatry studies (43). SVM uses a well-defined dataset to create a decision function or 

“hyperplane” that can best distinguish between categories, which can then be used to predict to 

which predefined group a new observation belongs. SVM can effectively handle high-dimensional 

data and is less prone to overfitting of the data (44). SVM classifies data points by maximizing the 

margin between classes in a high-dimensional space (45). It constructs an optimal classifier through 

a “training phase,” in which key brain features are identified to distinguish between two groups 

(such as patients vs. controls), which is then applied to categorize new, unseen data in the “testing 

phase.” Comparison studies between multivariate pattern recognition methods showed that SVM 

reduces the effect of noisy features that are highly correlated with each other in the presence of a 

large number of features (45). SVM can be combined with different methods for dimensionality 

reduction and feature selection to improve diagnostic accuracy (45). SVM was applied using the 

Statistics and Machine Learning Toolbox in Matlab. The main steps of the SVM method included: 

(a) preprocessing of features (regressing out age, gender, and dataset and normalizing each feature 

to [-1 1]), (b) feature extraction and selection within each cross validation (using an embedded 

feature selection method, which combines filter- and wrapper-based approaches, to select the most 

discriminative features), (c) training the SVM classifier model by 10-fold cross-validation, using the 
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training data, and (d) evaluating the performance of the SVM model, using the 10% holdout 

evaluation data (46). For more information regarding each of the steps, see online supplements.  

Correlation Analysis 

 We used SPSS software to calculate the correlations between identified features and clinical 

symptoms. Because some of the studies used CAPS-IV and others used CAPS-5, we used the index 

developed by Powers et al. (47) to convert the two versions of the CAPS into a common one for 

analysis. To correct for multiple correlations, we used an alpha of 0.0028 (0.05/18) for the 18 

network connectivities identified based on the SVM implementation for the first comparison (PTSD 

with and without MDD vs. TEHC), and 0.0025 (0.05/20) for the 20 network connectivities for the 

second comparison (PTSD-alone vs. PTSD-MDD). We regressed out age, gender, and 

sites/scanners as covariates during the feature preprocessing, so no covariate was used during the 

correlation analysis. Combining data from different scanners with different scanning parameters and 

field strengths is common in the neuroimaging literature (48), and can yield reliable data (49), as 

long as the data are regressed out for scanner type. To examine associations between the identified 

features and treatment outcome in the sub-sample receiving PE, we also tested the correlations 

between pre-treatment rsFC features and reduction in PTSD symptoms from pre- to post-treatment 

in both CAPS and HAM-D.  

Results 

Demographics and clinical characteristics of the participants 

The PTSD and the TEHC groups were not significantly different in gender (58 males for the 

PTSD group; 36 males for the control group; χ2(1)=1.4, p=.23) and age (42.22 years for the PTSD 

group; 40.80 years for the control group; t(177) = -0.63, p=.53). Patients with PTSD showed a 

significantly higher total CAPS score than TEHC (t=-15.92, p<.0001). We repeated the analyses to 

test potential differences between the PTSD with and without MDD comorbidity. No significant 
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differences were found for age (t(101)= -1.17, p=.24), CAPS (t(101)= -0.79, p=.93), or gender (χ
2
(1) = 

0.013, p=.91) between the two groups. As expected, the PTSD+MDD had higher HAM-D scores 

than the PTSD without MDD (M =18.67 and 12.82, respectively; t(101)= -4.8, p<.0001). Detailed 

demographic and clinical data are shown in Table 1. 

Discrimination between individuals with PTSD-all and TEHC 

The classification of PTSD vs. TEHC revealed 18 final features (for the full list, see Figure 1) as 

the final selected subset based on the SVM implementation (AUC = 0.87, L = 0.16, validation 

testing set: accuracy = 70.6%). The most discriminative features differentiating PTSD from TEHC 

included within network connectivity in executive control network (ECN) including ECN.LPFCr-

ECN.PPCr, ECN.LPFCl-ECN.PPCl, and within salience network (SN) (SN.ACC-SN.AInsulal, 

CMA-SN.AInsular; see Table 2 for network abbreviations). Compared with PTSD, TEHC showed 

stronger connectivity in the within ECN and SN networks. All abbreviations appear in Table 1. 

Discriminative features also emerged between network connectivity between SN-DAN, SN-

DMN, DMN-DAN, and DMN-ECN. Compared with patients with PTSD, TEHC showed lower 

connectivity in the DMN-DAN, SN-DMN, but higher connectivity in SN-DAN, SN-DMN, and 

DMN-ECN. For a full list of areas see Table S2.  

Discrimination of PTSD+MDD individuals from PTSD alone 

The classification of PTSD alone vs. PTSD+MDD revealed 20 final features (for the full 

list, see Figure 2) as the final selected subset based on the SVM implementation (training set AUC 

= 0.85, L = 0.15, validation testing set: accuracy = 76.7%). The most discriminative features 

differentiating PTSD alone from PTSD+MDD included within-network connectivity in the basal 

ganglia network (BGN; Nacc-THA), within DAN (DAN.FEFl-DAN.IPSr), and within SN (CMA-

SN.RPFCl). PTSD-alone showed higher within connectivity than PTSD-MDD in BGN, but lower 

connectivity in within ECN, SN, and DAN. 
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Also, discriminative features emerged between BGN and other related networks including 

BGN-DAN, and BGN-SN as well as other between-networks connectivity including SN-DMN, 

DAN-ECN, and SMN-DMN. PTSD-alone showed higher connectivity in BGN-other networks, SN-

DMN, DAN-ECN, and SMN-other networks. For a full list of areas see Table S3. 

Associations between the identified biomarkers at baseline and PTSD and MDD 

symptomatology at baseline 

 We examined the correlations between rsFC features identified above and CAPS and 

HAMD symptom severity at baseline. 

 Associations between the identified biomarkers from PTSD-all and TEHC 

classification and symptomatology. CAPS: Significant negative correlation was found between 

baseline CAPS scores and within ECN connectivity with p<0.001 (ECN.LPFCR-ECN.PPCR: r=-

0.302, FPr-ECN.PPC: r=-0.248, ECN.LPFCL-ECN.PPCL: r=-0.237). HAMD: Significant negative 

correlation was found between baseline HAM-D scores and within ECN connectivity with p<0.001 

(FPr-ECN.LPFCR: r=-0.239, p=0.002). 

 Associations between the identified biomarkers from PTSD+MDD and PTSD-alone 

classification and symptomatology. CAPS: No significant correlation was found in any networks. 

HAM-D: No significant correlation was found in any networks.  

The utility of baseline biomarkers in predicting PE treatment outcome, calculated as changes 

in symptoms from pre- to post-treatment 

 We examined the correlations between the baseline rsFC features identified above and the 

changes in CAPS and HAM-D symptom severity from baseline to post-treatment. 

Features identified from PTSD-all and TEHC classification. CAPS: Higher within ECN 

connectivity (ECN.LPFCr-ECN.PPCr: r=0.455, p<0.001, FPr-ECN.LPFCr: r=0.415, p=0.002) 
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correlated with greater PTSD CAPS symptom reduction. HAM-D: No significant correlation was 

found. 

Features identified from PTSD-alone and PTSD-MDD classification. CAPS: No 

significant association was found. HAMD: No significant association was found. 

Trend level findings. Associations with symptomatology at baseline. PTSD-all vs. 

TEHC: A trending negative correlation was found between baseline CAPS scores and within-SN 

connectivity (SN.ACC-SN.Insulal: r=-0.205, p=0.007). A trending positive correlation was found 

between baseline CAPS scores and within-DMN-DAN connectivity (DMN.LPR-DAN.FEFr: 

r=0.207, p=0.007). PTSD+MDD vs. PTSD-alone: A trending negative correlation was found 

between baseline CAPS scores and Nacc-THA (r=-0.203, p=0.041). A trending negative correlation 

was found also between baseline HRSD scores and THA-DAN.FEFr connectivity (r=-0.182, 

p=0.066). Associations with treatment response. A trending positive correlation was found 

between greater PTSD CAPS symptom reduction and within-ECN (FPr-ECN.PPCr: r=0.365, 

p=0.006) and within-SN connectivity (SN.ACC-SN. Ainsulal:r=0.284, p=0.035). For correlations 

with specific clusters of the CAPS see Tables S4-7.  

Discussion 

The present study identified functional connectivity biomarkers differentiating individuals 

with PTSD, PTSD+MDD, and TEHC, and demonstrated their clinical utility. SVM models were 

able to discriminate with a high level of accuracy between individuals with PTSD and TEHC, and 

between individuals with PTSD alone and those with comorbid PTSD+MDD. Specifically, we 

achieved 70.6% accuracy in discriminating between individuals with PTSD and TEHC, and 76.7% 

accuracy in discriminating between individuals with PTSD and those with PTSD+MDD for out-of-

sample prediction. Within- and between-networks connectivity features differentiating PTSD from 

TEHC (Figure 1) and PTSD alone from PTSD+MDD (Figure 2) were consistent with at least some 
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of the previous reports characterizing connectivity abnormalities in PTSD and attest to the 

importance of MDD-related abnormalities in differentiating between PTSD alone and PTSD+MDD. 

The identified altered connectivity features characterizing individuals with PTSD (with or without 

MDD comorbidity) compared with TEHC demonstrated clinical utility, as evident by the 

associations between these features and symptomatology and ability to predict treatment response.  

The findings attest to the ability to differentiate between PTSD and TEHC with a relatively 

high level of accuracy. Consistent with at least some of the literature, among the most 

discriminative features were altered within-network connectivity in the SN and the ECN, as well as 

altered SN-DMN between-networks connectivity (4,5). The findings are consistent with some 

previous reports suggesting enhanced connectivity between amygdala and insula nodes within the 

SN (6,7) but not with other studies (4,50). In addition to the networks described in the literature on 

PTSD, the current findings also demonstrate the role of the triple network alteration, consisting of 

the ECN, the SN, and the DMN. It has been suggested that the SN integrates sensory, emotional, 

and cognitive information, acts as an interface between the DMN and the ECN to integrate and 

balance internal mental processes with external stimulus-driven cognitive and affective processes 

(51,52), and may be useful in differentiating individuals with PTSD from controls (53). Individuals 

with PTSD showed higher DMN-DAN network connectivity, which may reflect the abnormal 

cognitive function associated with PTSD. Currently, the diagnosis of PTSD relies on subjective 

reporting of symptoms. The altered network connectivities identified here may eventually be used 

to develop objective biomarkers for PTSD to help clinicians improve the accuracy of PTSD 

diagnosis.  

The findings further demonstrate the ability to differentiate between PTSD+MDD from 

PTSD alone, with 76.7% accuracy. Among the most discriminative rsFC abnormalities in 

PTSD+MDD vs. PTSD alone were those related to reward dysfunctions, which are typical of 

patients with MDD (54). Individuals with PTSD+MDD vs. PTSD alone showed rsFC abnormalities 
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within the BGN, which has been found to underlie reward behavior in prior reports (55). BGN 

comprises the striatum (subdivided into the caudate nucleus and putamen), globus pallidus, and 

thalamus (56). Altered BGN connectivity in individuals with PTSD+MDD, as opposed to those 

with PTSD alone, may underlie impaired motivation and a high prevalence of addictions and 

substance use in this subpopulation (57). The findings also attest to the importance of identifying 

not only within-network but also between-networks impairments, indicating both altered BGN 

within-network connectivity and altered connectivity between BGN and other related networks 

(BGN-DAN and BGN-SN) in PTSD+MDD vs. PTSD alone.   

Unique brain-based biomarkers differentiating PTSD alone from PTSD+MDD may help 

explain divergent findings in PTSD connectivity studies enrolling heterogeneous populations, 

mixing individuals with PTSD alone and those with PTSD+MDD. Including different proportions 

of individuals with PTSD alone and PTSD+MDD may influence which networks show the most 

altered connectivity. Moreover, features differentiating PTSD+MDD from PTSD alone may be 

useful in identifying novel therapeutic targets, which are much needed in this comorbid subgroup 

that is frequently non-responsive to treatment and shows poor prognosis (18). Currently, targets of 

intervention for PTSD include fear processing pathways but do not address MDD-related deficits. 

Potentially distinct patterns of brain regions may be involved in fear and reward processing in 

individuals with PTSD alone and those with comorbid PTSD+MDD. PTSD may be associated with 

decreased connectivity of pathways that are key to fear processing and fear expression, such as the 

BLA-orbitalfrontal cortex (OFC) and CMA-thalamus, respectively (58). PTSD comorbidity with 

MDD may be associated with decreased connectivity of pathways, which are key to the reward 

system, for example, decreased connectivity across multiple amygdala and striatal-subcortical 

pathways: BLA-OFC; NAcc-thalamus; and NAcc-hippocampus (59). Thus, it has been suggested 

that comorbid PTSD+MDD is associated with multifaceted functional connectivity alterations in 

both fear and reward systems (24). The present findings support this suggestion. The fact that 

available treatments do not focus on the specific patterns of alteration that characterize individuals 
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with PTSD+MDD may explain the poor prognosis of currently available treatments for this 

subpopulation, compared to that of patients with PTSD alone (24). Given the importance of the 

BGN and reward-related abnormalities in PTSD+MDD vs. PTSD alone, new therapeutic solutions 

for individuals with PTSD+MDD are needed, which target the altered BGN, such as those focusing 

on dopaminergic targets. 

Several post hoc explanations may be suggested why classification accuracy for PTSD vs. 

PTSD+MDD was higher than for PTSD vs. non-PTSD. One explanation is that the NAcc may play 

a critical role in differentiating those with and without MDD comorbidity, resulting in higher 

heterogeneity within the PTSD diagnosis (that is, between PTSD+MDD vs. PTSD alone) than 

between individuals who were exposed to trauma and developed PTSD and those who did not 

develop PTSD (24). This and other post hoc explanations should be considered with caution, 

however, because the difference between the clarification accuracy of PTSD vs. TEHC and PTSD 

alone vs. PTSD+MDD was only of 6.1% (70.6% and 76.7%, respectively). 

Findings demonstrate the clinical utility of the identified biomarkers discriminating PTSD-

all from TEHC. Specifically, significant associations were found between alteration in within ECN-

connectivity and PTSD and MDD symptoms, such that higher connectivity was associated with 

more severe symptoms. The identified biomarkers were also capable of predicting treatment 

response: lower within-ECN connectivity were associated with greater PTSD symptom reduction. 

This finding is consistent with a previous report demonstrating decreased connectivity within the 

ECN in patients with PTSD, potentially representing diminished emotion regulation abilities (i.e., 

inability to downregulate negative emotions) (4). Interestingly, the identified biomarkers 

discriminating PTSD alone from PTSD+MDD were not significantly associated with 

symptomatology and treatment response. One potential post-hoc explanation is that the received 

treatment focused on PTSD, and that treatment focusing on MDD may have yielded different 

results.   
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Several limitations should be noted. First, the present study combined data from three 

separate trials to increase sample size, with some differences between the trials in their inclusion 

and exclusion criteria, as well as differences between scanners in spatial or temporal signal-to-noise 

ratio. Additionally, we relied exclusively on differences between DSM disorders, despite the 

potential interest in within-disorder variance, including categorization options that transcend the 

boundaries of clinical diagnosis. Future studies should implement unsupervised machine learning 

approaches that can complement the current findings by determining the extent to which the 

biomarkers identified here for PTSD+MDD and PTSD are indeed those that create distinct 

subpopulations of patients. This could determine whether the identified data-driven biotypes of 

homogeneous patterns of dysfunctional connectivity match those found in the present study. Future 

studies with larger samples should also explore the association between the different clusters of 

PTSD symptoms and the identified resting-state features. Finally, it should be noted that because a 

trauma-unexposed subgroup was not included, the effect of trauma exposure could not be tested. 

These caveats notwithstanding, the current findings suggest that unique sets of brain-based 

biomarkers differentiate between PTSD (with and without comorbid MDD) and TEHC, as well as 

between PTSD alone and PTSD+MDD. Certain connectivity alterations in the PTSD+MDD 

comorbid population vs. PTSD alone may explain inconsistencies between previous studies that 

enrolled diverse participant populations. The present findings suggest that brain function 

abnormalities observed in PTSD+MDD vs. PTSD alone during fMRI resting state were those 

related to cortical-limbic dysregulation, which are the basis of MDD etiology and describe altered 

connections. The findings also stress the importance of the triple network in PTSD. The findings 

further demonstrate the clinical utility of the identified connectivity alterations, especially within 

ECN, by demonstrating its associations with PTSD and MDD symptoms, and its ability to predict 

subsequent treatment response. Taken together, the findings support the potential of resting-state 

fMRI to inform accurate future clinical assessment of psychopathology in individuals at high risk of 

developing PTSD following exposure to trauma, by the development of objective biomarkers 
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indicative of the diagnostic heterogeneity of psychopathology and of treatment prognosis. Such 

objective biomarkers may facilitate the early identification of heterogeneous subtypes of illness. 

Neuroimaging techniques hold the promise to aid in the clinical assessment of individual 

psychiatric patients, particularly in cases in which a clear differential diagnosis is difficult to 

establish because of comorbidity. If these findings are replicated in future research, they can make 

an important contribution to accurate diagnosis and help identify precise targets for maximally 

efficient treatment of PTSD+MDD and PTSD alone. 
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Table 1. Demographic and clinical characteristics of the three groups 
 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  TEHC PTSD-alone PTSD+MDD 
 N 76 51 52 
 Gender, N (%)       
    Male 36 (47.36%) 29 (56.86%) 29 (55.76%) 
    Female 40 (52.64%) 22 (43.14%) 23 (44.24%) 
 Race, N (%)       
   Caucasian 21 (27.63%) 12 (23.52%) 17 (32.69%) 
   African-American 23 (30.26%) 27 (52.94%) 22 (42.30%) 
   Hispanic 26 (34.21%) 0 (0%) 5 (9.61%) 
   Others 6 (7.89%) 12 (23.52%) 8 (15.38%) 
 Age, mean years (SD) 40.8 (15.8) 40.6 (13.8) 43.9 (14.7) 
 HAM-D, mean (SD) 2.97 (3.5) 12.8 (6.2) 18.7 (6.1) 
 Total CAPS, mean (SD) 6.3 (6.8) 56.8 (23.5) 57.2 (28.9) 
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Table 2: Abbreviation of network names 

 

Network Seed names Abbreviation 
Coordinates 
(x,y,z) 

ECN 

Networks.Executive Control.Lateral prefrontal cortex 
Left 

ECN.LPFCl -43,33,28 

Networks. Executive Control.Lateral prefrontal 
cortex Right   

ECN.LPFCr 41,38,30 

Networks. Executive Control.Posterior parietal cortex 
Left 

ECN.PPCl -46,-58,49 

Networks. Executive Control.Posterior parietal cortex 
Right 

ECN.PPCr 52,-52,45 

SN 

Networks.Salience.Anterior Cingulate Cortex SN.ACC 0,22,35 

Networks.Salience.AInsula Left SN.Insulal -44,13,1 

Networks.Salience.AInsula Right SN.Insular 47,14,0 

Networks.Salience.Rostral Prefrontal Left SN.RPFCl -32,45,27 

Networks.Salience.Rostral Prefrontal  Right SN.PRFCr 32,46,27 

Networks.Salience.Supramarginal gyrus Left SN.SMGl -60,-39,31 

Networks.Salience.Supramarginal gyrus Right SN.SMGr 62,-35,32 

Atlas.Amygdala AMG ±23,-4,-18 

Atlas.Basolateral amygdala BLA ±27,-7,-10 

Atlas.Central medial amygdala CMA ±23,-6,-20 

DMN 

Networks.DefaultMode.MPFC DMN.mPFC 1,55,-3 

Networks.DefaultMode.lateral parietal Left DMN.LPl -39,-77,33 

Networks.DefaultMode.lateral parietal Right DMN.LRr 47,-67,29 

Networks.DefaultMode.Posterior Cingulate Cortex DMN.PCC 1,-61,38 

Atlas.Anterior hippocampus HIPA ±30,-15,-18 

Atlas.Posterior hippocampus HIPP ±29,-38,2 

Atlas.Precuneus Cortex Precuneus 0,-65,41 

BGN 
Atlas.Nucleus Accumbens NAcc 10,12,-7 

Atlas.Thalamus THA ±10,-17,9 

DAN 

Networks.DorsalAttention.Frontal eye fields Left DAN.FEFl -27,-9,64 

Networks.DorsalAttention.Frontal eye fields Right DAN.FEFr 30,-6,64 

Networks.DorsalAttention.Intraparietal sulcus Left DAN.IPSl -39,-43,52 

Networks.DorsalAttention.Intraparietal sulcus Right   DAN.IPSr 39,-42,54 

PFN 

Atlas.Superior Frontal Gyrus Right SFGr 16,18,61 

Atlas.Superior Frontal Gyrus Left SFGl -16,18,61 

Atlas.Middle Frontal Gyrus Right MidFGr 43,18,45 

Atlas.Middle Frontal Gyrus Left MidFGl -43,18,45 

Atlas.Inferior Frontal Gyrus, pars triangularis Right IFGtrir 46,27,27 
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Atlas.Inferior Frontal Gyrus, pars triangularis Left IFGtril -46,27,27 

Atlas.Inferior Frontal Gyrus, pars opercularis Right IFGoperr 54,16,19 

Atlas.Inferior Frontal Gyrus, pars opercularis Left IFGoperl -54,16,19 

Atlas.Frontal Pole Right  FPr 31,59,13 

Atlas.Frontal Pole Left FPl -31,59,13 

Atlas.Subcallosal Cortex SubCalC 0,21,-13 

Atlas.Frontal Orbital Cortex Right OFCr 32,24,-15 

Atlas.Frontal Orbital Cortex Left OFCl -32,24,-15 

SMN 

Networks.SensoriMotor.Lateral Left SMN.Ll -55,-12,29 

Networks.SensoriMotor.Lateral Right SMN.Lr 56,-10,29 

Networks.SensoriMotor.Superior  SMN.S 0,-31,67 
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Figure 1. The most discriminative networks from differentiating PTSD-all from TEHC.  Purple: 
TEHC>PTSD, blue: TEHC<PTSD. The figure represents the connectogram of the most 
discriminative multivariate features (spatial functional connectivity). The abbreviations are listed in 
Table 1. 
 

 
 

Figure 2. The most discriminative networks from differentiating PTSD-alone from PTSD-MDD.  
Purple: PTSD-alone>PTSD-MDD, blue: PTSD-alone<PTSD-MDD. The figure represents the 
connectogram of the most discriminative multivariate features (spatial functional connectivity). The 
abbreviations are listed in Table 1. 
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