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Abstract

Background: Comorbidity between posttraumatic stress disord&SD) and major depressive
disorder (MDD) was commonly overlooked by studiramining resting-state functional
connectivity (rsFC) patterns in PTSD. The curreatlg used a data-driven approach to identify
rsFC biomarkers to (a) differentiate PTSD (withaathout MDD) from trauma-exposed healthy
controls (TEHCs), (b) compare PTSD alone with cdmbPTSD+MDD, and (c) explore the
clinical utility of the identified biomarkers bysgng their associations with clinical symptoms and

treatment response.

Method: Resting-state magnetic resonance images were elt&iom 51 individuals with PTSD
alone, 52 with PTSD+MDD, and 76 TEHCs. Fifty-fivketbe 103 PTSDs were enrolled in
prolonged exposure treatment. A support vector maatsVM) model was used to identify rsFC
biomarkers differentiating PTSD (with or without NI from TEHCs, and PTSD alone from
PTSD+MDD. The associations between the identifeatudres and symptomatology were tested

with Pearson correlations.

Results: The SVM models achieved 70.6% accuracy in discratmg between PTSD and TEHCs,
and 76.7% accuracy in discriminating between PTBDeaand PTSD+MDD for out-of-sample
prediction. Within-network connectivity in the exgiwe control network, prefrontal network, and
salience network discriminated PTSD from TEHCs. basal ganglia network played an important
role in differentiating PTSD alone from PTSD+MDDI$D scores were inversely correlated to
within-executive control network connectivity (p€1), and executive control network connectivity

correlated positively with treatment response (p%)0

Conclusion: Results suggest that unique brain-based abnoresatitfferentiate PTSD from TEHC
and PTSD from PTSD+MDD, and demonstrate clinicdityin predicting levels of

symptomatology and treatment response.



Keywords: Posttraumatic stress disorder, major depressivedds, treatment outcome, fMRI

classification, resting state functional MRI, mashiearning, support vector machine



Posttraumatic stress disorder (PTSD) is a debirgatondition commonly observed in
individuals following traumatic exposure, with eséted lifetime prevalence of 6.8% (1). PTSD is
highly heterogeneous (2) and frequently comorbithwwiajor depression disorder (MDD) (3),
complicating our ability to identify its brain memhisms and identify novel therapeutic targets.
Accumulating resting-state functional connectiity~C) studies implicate altered within-network
connectivity in the salience network (SN), defamtide network (DMN), executive control network
(ECN), as well as between these networks (4,5)hWwihe SN, which typically includes the
anterior cingulate cortex (ACC) and anterior inssgladies have found enhanced connectivity
between amygdala and insula nodes in individuatls RTSD relative to trauma-exposed (TEHC)
and non-trauma exposed healthy controls (HC) (3tWas hypothesized that such enhanced
connectivity attests to hypervigilance (6,7), wiasréecreased connectivity between DMN nodes
(e.g., medial prefrontal cortex [PPC], precunelis, ventromedial prefrontal cortex [vmPFC], and
hippocampus) in individuals with PTSD (5,8,9) reteedepersonalization/derealization symptoms
(10). It has been further suggested that theseedltsFC patterns may represent neurobiological
correlates of increased salience processing aneigdance, at the cost of awareness of internal
thoughts and autobiographical memory in PTSD @ividuals with PTSD also showed decreased
connectivity within the ECN (or frontal parietaltm®rk, which includes portions of the lateral
prefrontal cortex and posterior parietal cort@otentially representing diminished emotion

regulation abilities (i.e., inability to downregtdanegative emotions) (11,12).

Although the preponderance of data supports a efe\T SD as being associated with
altered within- and between-network connectivitysiN, DMN, and ECN, divergent findings have
also been reported (4). Within the SN, connectiligywveen the amygdala and dorsal anterior
cingulate (dACC) has been shown in various stuididee higher (13), lower (6), or unaltered (7) in
individuals with PTSD compared to controls (TEH@ &fC). Both higher (5,14) and lower (8)
between-network connectivity of DMN nodes, suchh&sPCC/precuneus, and the SN have been

demonstrated in PTSD compared to controls. Sontkestinave reported reduced connectivity
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between amygdala and the inferior frontal gyru&S)lIFvmPFC, and middle frontal cortex (6,13,14),
whereas others found no differences in connecthétyveen the amygdala and vmPFC pathway

(7,15).

A potential reason for these divergent findingstmhige the high comorbidity rates between
PTSD and MDD, which have been largely overlookeakigting connectivity data analyses. PTSD
and MDD co-occur in as many as 52% of cases (16ahd) this comorbidity is associated with
significantly greater subjective distress and impent than either condition alone (e.g., 7-10),
demonstrating a more chronic course of impairm&8}. (These clinical differences suggest that
corresponding underlying neurobiological differemoeay be present as well. Meta-analyses on
connectivity abnormalities in MDD (19-22) suggéd&ittMDD is characterized by
hypoconnectivity within the ECN and between froraoetal systems and parietal regions of the
dorsal attention network (DAN). MDD was also asatail with hyperconnectivity within the
DMN, and with hyperconnectivity between ECN consgstems and regions of the DMN. It is an
open question whether individuals with PTSD+MDDwhuore connectivity abnormalities that are
similar to those documented among individuals WADD than do individuals with PTSD without

MDD comorbidity.

To date, only a few studies (23,24) have asseskether individuals with PTSD+MDD
exhibit connectivity differences relative to indivals with PTSD alone. Kennis et al. (23) found in
PTSD+MDD vs. PTSD alone increased connectivity leetwsubgenual and perigenual ACC, as
well as decreased connectivity of the subgenual A@E the thalamus. Yet this study focused on
the insula and ACC as seed regions, and did natasghotential alterations in pathways involving
the nucleus accumbents (NAcc). Zhu et al. (24) doilmat PTSD+MDD, compared to PTSD alone,
was associated with multifaceted functional connégtalterations, including decreased
connectivity across multiple amygdala and striatddcortical pathways. These findings suggest

that individuals with comorbid PTSD+MDD may showsélynctions that characterize both



individuals with PTSD and those with MDD, but it svaot possible to draw definitive conclusions

because of the small sample size.

Little is known about the clinical utility of thdtared within- and between-networks
connectivity identified so far in the literature BISD. The few available findings suggest that
rsFC of the PCC with the perigenual anterior ciagpiand the right amygdala is associated with
current PTSD symptoms, and that correlation withright amygdala predicts future PTSD
symptoms, but no treatment effect has been st@ed Another study showed that neural circuitry
changes may be associated with treatment respomsidonot investigate the ability of baseline
biomarkers to predict treatment response (26).i@dakis gap in the literature by investigating the
clinical utility of identified biomarkers is of dical importance in the progress towards persoedliz

PTSD treatments (27).

To address these gaps in knowledge, the preseaiyt Bas the following four aims: (a)
identify network connectivity differences distinghing individuals with PTSD (with and without
comorbid MDD) from TEHC,; (b) identify network conctevity differences distinguishing
individuals with PTSD without MDD from those witiTBD+MDD; (c) examine the clinical utility
of the features identified through aims (a) andbpexamining their associations with MDD and
PTSD symptomatology; and (d) test the utility of tdentified network connectivity features in
predicting subsequent treatment outcome in a soipleareceiving prolonged exposure (PE)
therapy. These four aims are critical for develgmrbetter understanding of the unique

neuropathology of PTSD patients and to identifyeldkierapeutic targets.

To identify the network connectivity features (ai(a$ and (b)), the present study used a
support vector machine (SVM) model, which is a maliate pattern recognition machine learning
(ML) technique especially well-suited for discrirating high-dimensional rsFC fMRI data. ML
approaches have two main advantages over standmatiate analytical methods that are typically

used in neuroimaging. First, the traditional apph®s are based on average estimates of
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differences at the group level. By contrast, ML aghes make possible inferences at the level of
the individual rather than the group. In an eftorincrease the translational applicability of the
results to clinical practice where decisions arelenabout individual patients, not groups, there has
been a recent shift toward the use of multivadtetechniques (28—-32). Findings based on ML
approaches are expected to have higher translagpphcability to everyday decision making in
clinical practice. Second, ML approaches are mensisive to differences that are subtle and
spatially distributed by taking inter-regional aaations into account. Such spatially distributed
patterns in the brain might be undetectable usinggcomparisons. Thus, ML approaches provide
an optimal framework for investigating psychiatlisorders that affect a distributed network of

regions (Nicholson et al., 2019; Orru et al., 2082;& Costafreda, 2013; Wolfers et al., 2015).

Previous studies comparing traditional and ML apph®s with group classification based
on resting-state data suggest that ML approacleesiare sensitive to the subtle and spatially
diffuse alterations typically observed in psychatlisorders, and therefore may be better suited to
the development of a real-world clinical diagnostiols, than are standard mass-univariate
techniques (28). Previous studies suggest SVMtglbdidiscriminate between trauma-exposed
individuals and between trauma-exposed and nomrmimed healthy controls with high levels of
accuracy (67.57% -91%) ( 40,42). Studies furthggsst its ability to predict long-term response to

antidepressant medication (21).

M ethod

Participants

We combined data from three studies conductededildw York State Psychiatric Institute
(NYSPI). The studies were approved by the NYSPitutsonal Review Board, and all participants
provided written informed consent after receivimgexplanation of the procedures. rsFC fMRI was

conducted in a total of 179 individuals: 51 with§IX alone, 52 with PTSD+MDD, and 76 TEHCs.



Detailed inclusion and exclusion criteria for eatidy appear in Table S1, in the online
supplements. Briefly, all participants met the D®MTR criterion A1 and A2 (35) or DSM-5 (36)
PTSD criterion A for adult traumatic events. Cladievaluators administered the Structured
Clinical Interview for DSM-IV Axis | Disorders (SOJ) (37) and the Clinician-Administered PTSD
Scale (CAPS) (38) to establish psychiatric diaga@sel assess PTSD severity. All participants in
the PTSD+MDD group, but not in the PTSD alone oHTE also met SCID DSM-1V or DSM-5
criteria for a major depressive episode (35). Esiolu criteria for participants in the TEHC group
consisted of current or past Axis | disorders,udahg substance use disorders and the use of any
psychotropic medications. Exclusion criteria fdrggbups included any condition that would rule

out MRI administration.

A subsample of 55 patients with PTSD (33 PTSD-al@2ePTSD-MDD) underwent PE
treatment conducted by one of two trained theragidhering to a 10-week standard PE protocol

(39). The detailed PE treatment protocol was diesdrin Helpman et al. (40) and Zhu et al. (24).

Seed-based functional connectivity analyses

Neuroimaging data acquisition, preprocessing ogimgdata, and seed-based functional
connectivity analyses appear in the online supptesnesFC analyses were carried out using a
seed-based approach implemented in the CONN-fMRt#enal Connectivity toolbox v13(41).
ROI-to-ROI connectivity analysis was performed gs#3 ROIs previously identified as important
in PTSD and MDD (see online supplements). The nBfhD time series was computed across all
voxels within each ROI. Bivariate regression anedywere used to determine the linear association
of the BOLD time series between each pair of regiifon each individual. The resultant correlation
coefficients were transformed intescores using Fisher's transformation to satisfynadity

assumptions.

10



Statistical Analyses

Clinical Variables

We used SPSS software (SPSS Inc. Chicago, IL, U&Astatistical analyses. T-tests were
used to test the differences in clinical symptoms age between groups. Chi-square test was used

to analyze differences in gender and race.

Machine Learning Analysis: SVM

Linear kernel SVM has emerged as one of the mgatlpo supervised machine learning
(ML) methods, with learning algorithms aimed atssliication used in neuroimaging (42) and
psychiatry studies (43). SVM uses a well-definethslet to create a decision function or
“hyperplane” that can best distinguish betweengmies, which can then be used to predict to
which predefined group a new observation belonys4 $an effectively handle high-dimensional
data and is less prone to overfitting of the dd#y.(SVM classifies data points by maximizing the
margin between classes in a high-dimensional sf#elt constructs an optimal classifier through
a “training phase,” in which key brain features ientified to distinguish between two groups
(such as patients vs. controls), which is theniedgb categorize new, unseen data in the “testing
phase.” Comparison studies between multivariateepatecognition methods showed that SVM
reduces the effect of noisy features that are figbirelated with each other in the presence of a
large number of features (45). SVM can be combimigd different methods for dimensionality
reduction and feature selection to improve diagna@sicuracy (45). SVM was applied using the
Statistics and Machine Learning Toolbox in Mati@bhe main steps of the SVM method included:
(a) preprocessing of features (regressing outgaggjer, and dataset and normalizing each feature
to [-1 1]), (b) feature extraction and selectionhivi each cross validation (using an embedded
feature selection method, which combines filted amapper-based approaches, to select the most

discriminative features), (c) training the SVM ddier model by 10-fold cross-validation, using the
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training data, and (d) evaluating the performarfaa® SVM model, using the 10% holdout

evaluation data (46). For more information regagdeach of the steps, see online supplements.

Correlation Analysis

We used SPSS software to calculate the correlabetween identified features and clini
symptoms. Because some of the studies used CARGd\bthers used CAPS-5, we used the i
developed byPowers et al. (47) to convert the two versionhefCAPS into a common one for
analysis. To correct for multiple correlations, wsed an alpha of 0.0028 (0.05/18) for the 18
network connectivities identified based on the SwWiplementation for the first comparison (PT
with and without MDD vs. TEHC), and 0.0025 (0.05/&fr the 20 network connectivities for thg
second comparison (PTSD-alone vs. PTSD-MDD). Weessgd out age, gender, and
sites/scanners as covariates during the featupgquessing, so no covariate was used during t

correlation analysis. Combining data from differscanners with different scanning parameters

field strengths is common in the neuroimaging éitere (48), and can yield reliable data (49), a

long as the data are regressed out for scannerTgpexamine associations between the identif
features and treatment outcome in the sub-sampdevieg PE, we also tested the correlations
between pre-treatment rsFC features and reducti®T 5D symptoms from pre- to post-treatme

in both CAPS and HAM-D.

Results

Demogr aphics and clinical characteristics of the participants

The PTSD and the TEHC groups were not significadiffigrent in gender (58 males for the
PTSD group; 36 males for the control groy®{1)=1.4, p=.23) and age (42.22 years for the PTSD
group; 40.80 years for the control group;#4= -0.63, p=.53). Patients with PTSD showed a
significantly higher total CAPS score than TEHC- {592, p<.0001). We repeated the analyses to

test potential differences between the PTSD withwaithout MDD comorbidity. No significant
12



differences were found for agei i~ -1.17, p=.24), CAPS (b= -0.79, p=.93), or gender’(1) =
0.013,p=.91) between the two groups. As expected, theDRFFMDD had higher HAM-D scores
than the PTSD without MDDM =18.67 and 12.82, respectivelypty= -4.8, p<.0001). Detailed

demographic and clinical data are shown in Table 1.

Discrimination between individualswith PTSD-all and TEHC

The classification of PTSD vs. TEHC revealed 1&lfieatures (for the full list, see Figure 1) as
the final selected subset based on the SVM impléatien (AUC = 0.87, L = 0.16, validation
testing set: accuracy = 70.6%). The most discritiiadeatures differentiating PTSD from TEHC
included within network connectivity in executiventrol network (ECN) including ECN.LPFCr-
ECN.PPCr, ECN.LPFCI-ECN.PPCI, and within salieneguork (SN) (SN.ACC-SN.Alnsulal,
CMA-SN.Alnsular; see Table 2 for network abbrewas). Compared with PTSD, TEHC showed

stronger connectivity in the within ECN and SN nettis. All abbreviations appear in Table 1.

Discriminative features also emerged between nétwonnectivity between SN-DAN, SN-
DMN, DMN-DAN, and DMN-ECN. Compared with patientstiwPTSD, TEHC showed lower
connectivity in the DMN-DAN, SN-DMN, but higher coactivity in SN-DAN, SN-DMN, and

DMN-ECN. For a full list of areas see Table S2.

Discrimination of PTSD+MDD individualsfrom PTSD alone

The classification of PTSD alone vs. PTSD+MDD régd&0 final features (for the full
list, see Figure 23s the final selected subset based on the SVM mggiéation (training set AUC
=0.85, L = 0.15, validation testing set: accurackb.7%). The most discriminative features
differentiating PTSD alone from PTSD+MDD includedhin-network connectivity in the basal
ganglia network (BGN; Nacc-THA), within DAN (DAN.FHE-DAN.IPSr), and within SN (CMA-
SN.RPFCI). PTSD-alone showed higher within connégtthan PTSD-MDD in BGN, but lower

connectivity in within ECN, SN, and DAN.
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Also, discriminative features emerged between B@tl @her related networks including
BGN-DAN, and BGN-SN as well as other between-neksaonnectivity including SN-DMN,
DAN-ECN, and SMN-DMN. PTSD-alone showed higher cectivity in BGN-other networks, SN-

DMN, DAN-ECN, and SMN-other networks. For a fubtliof areas see Table S3.

Associations between the identified biomarkers at baselineand PTSD and MDD

symptomatology at baseline

We examined the correlations between rsFC featdesdified above and CAPS and

HAMD symptom severity at baseline.

Associations between the identified biomarkers from PTSD-all and TEHC

classification and symptomatology. CAPS: Significant negative correlation was found betwee

baseline CAPS scores and within ECN connectivityhwk0.001 (ECN.LPFCR-ECN.PPCR: r=
0.302, FPr-ECN.PPC: r=-0.248, ECN.LPFCL-ECN.PPGL01237).HAMD: Significant negative
correlation was found between baseline HAM-D scares within ECN connectivity with p<0.00

(FPr-ECN.LPFCR: r=-0.239, p=0.002).

Associations between theidentified biomarkersfrom PTSD+MDD and PT SD-alone
classification and symptomatology. CAPS. No significant correlation was found in any netks

HAM-D: No significant correlation was found in any netksor

The utility of baseline biomarkersin predicting PE treatment outcome, calculated as changes

in symptoms from pre- to post-tr eatment

We examined the correlations between the basel@ features identified above and th

changes in CAPS and HAM-D symptom severity fromehiae to post-treatment.

Featuresidentified from PTSD-all and TEHC classification. CAPS: Higher within ECN

connectivity (ECN.LPFCr-ECN.PPCr: r=0.455, p<0.0BBRy-ECN.LPFCr: r=0.415, p=0.002)
14



correlated with greater PTSD CAPS symptom reductikaM-D: No significant correlation was

found.

Featuresidentified from PT SD-alone and PTSD-M DD classification. CAPS: No

significant association was fourldAMD: No significant association was found.

Trend level findings. Associations with symptomatology at baseline. PTSD-all vs.
TEHC: A trending negative correlation was found betweasetine CAPS scores and within-SN
connectivity (SN.ACC-SN.Insulal: r=-0.205, p=0.00&)trending positive correlation was found
between baseline CAPS scores and within-DMN-DANnemtivity (DMN.LPR-DAN.FEFr:
r=0.207, p=0.007)PTSD+M DD vs. PT SD-alone: A trending negative correlation was found
between baseline CAPS scores and Nacc-THA (r=-0j263.041). A trending negative correlation
was found also between baseline HRSD scores andDAR.FEFr connectivity (r=-0.182,
p=0.066).Associations with treatment response. A trending positive correlation was found
between greater PTSD CAPS symptom reduction arfdnsECN (FPr-ECN.PPCr: r=0.365,
p=0.006) and within-SN connectivity (SN.ACC-SN. Aulal:r=0.284, p=0.035). For correlations

with specific clusters of the CAPS see Tables S4-7.

Discussion

The present study identified functional connecyilatomarkers differentiating individuals
with PTSD, PTSD+MDD, and TEHC, and demonstrated timical utility. SVM models were
able to discriminate with a high level of accurdeyween individuals with PTSD and TEHC, and
between individuals with PTSD alone and those witinorbid PTSD+MDD. Specifically, we
achieved 70.6% accuracy in discriminating betweelividuals with PTSD and TEHC, and 76.7%
accuracy in discriminating between individuals wihSD and those with PTSD+MDD for out-of-
sample prediction. Within- and between-networksnemtivity features differentiating PTSD from

TEHC (Figure 1) and PTSD alone from PTSD+MDD (Faga) were consistent with at least some
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of the previous reports characterizing connectigliypormalities in PTSD and attest to the
importance of MDD-related abnormalities in diffetiating between PTSD alone and PTSD+MDD.
The identified altered connectivity features chegazing individuals with PTSD (with or without
MDD comorbidity) compared with TEHC demonstrateidichl utility, as evident by the

associations between these features and symptamyggtahd ability to predict treatment response.

The findings attest to the ability to differentidtetween PTSD and TEHC with a relatively
high level of accuracy. Consistent with at leashe®f the literature, among the most
discriminative features were altered within-netwodknectivity in the SN and the ECN, as well as
altered SN-DMN between-networks connectivity (4 H)e findings are consistent with some
previous reports suggesting enhanced connectiettyden amygdala and insula nodes within the
SN (6,7) but not with other studies (4,50). In diddito the networks described in the literature on
PTSD, the current findings also demonstrate the ebthe triple network alteration, consisting of
the ECN, the SN, and the DMN. It has been suggdektddhe SN integrates sensory, emotional,
and cognitive information, acts as an interfaceveen the DMN and the ECN to integrate and
balance internal mental processes with exterrmaluttis-driven cognitive and affective processes
(51,52), and may be useful in differentiating indials with PTSD from controls (53). Individuals
with PTSD showed higher DMN-DAN network connectyyitvhich may reflect the abnormal
cognitive function associated with PTSD. Currentg diagnosis of PTSD relies on subjective
reporting of symptoms. The altered network connéacts identified here may eventually be used
to develop objective biomarkers for PTSD to helpicians improve the accuracy of PTSD

diagnosis.

The findings further demonstrate the ability tdeliéntiate between PTSD+MDD from
PTSD alone, with 76.7% accuracy. Among the mosiriahignative rsFC abnormalities in
PTSD+MDD vs. PTSD alone were those related to réwgsfunctions, which are typical of

patients with MDD (54). Individuals with PTSD+MDDBVPTSD alone showed rsFC abnormalities
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within the BGN, which has been found to underlwaed behavior in prior reports (55). BGN
comprises the striatum (subdivided into the caudatdeus and putamen), globus pallidus, and
thalamus (56). Altered BGN connectivity in indivala with PTSD+MDD, as opposed to those
with PTSD alone, may underlie impaired motivation @ high prevalence of addictions and
substance use in this subpopulation (57). Thergglalso attest to the importance of identifying
not only within-network but also between-netwonkgairments, indicating both altered BGN
within-network connectivity and altered connectnietween BGN and other related networks

(BGN-DAN and BGN-SN) in PTSD+MDD vs. PTSD alone.

Unique brain-based biomarkers differentiating PTe&d@nhe from PTSD+MDD may help
explain divergent findings in PTSD connectivitydies enrolling heterogeneous populations,
mixing individuals with PTSD alone and those withdD+MDD. Including different proportions
of individuals with PTSD alone and PTSD+MDD maylurgince which networks show the most
altered connectivity. Moreover, features differatiig PTSD+MDD from PTSD alone may be
useful in identifying novel therapeutic targets,ievhare much needed in this comorbid subgroup
that is frequently non-responsive to treatmentsravs poor prognosis (18). Currently, targets of
intervention for PTSD include fear processing patysvbut do not address MDD-related deficits.
Potentially distinct patterns of brain regions nb@yinvolved in fear and reward processing in
individuals with PTSD alone and those with como®idSD+MDD. PTSD may be associated with
decreased connectivity of pathways that are kdégaoprocessing and fear expression, such as the
BLA-orbitalfrontal cortex (OFC) and CMA-thalamugspectively (58). PTSD comorbidity with
MDD may be associated with decreased connectivipathways, which are key to the reward
system, for example, decreased connectivity acragsple amygdala and striatal-subcortical
pathways: BLA-OFC; NAcc-thalamus; and NAcc-hippogais (59). Thus, it has been suggested
that comorbid PTSD+MDD is associated with multiecefunctional connectivity alterations in
both fear and reward systems (24). The presennfijsdsupport this suggestion. The fact that

available treatments do not focus on the specdttepns of alteration that characterize individuals
17



with PTSD+MDD may explain the poor prognosis ofreatly available treatments for this
subpopulation, compared to that of patients witisB&lone (24). Given the importance of the
BGN and reward-related abnormalities in PTSD+MDDR/ESD alone, new therapeutic solutions
for individuals with PTSD+MDD are needed, whichgeirthe altered BGN, such as those focusing

on dopaminergic targets.

Severalpost hocexplanations may be suggested why classificaticaracy for PTSD vs.
PTSD+MDD was higher than for PTSD vs. non-PTSD. &x@anation is that the NAcc may play
a critical role in differentiating those with andtout MDD comorbidity, resulting in higher
heterogeneity within the PTSD diagnosis (that &ween PTSD+MDD vs. PTSD alone) than
between individuals who were exposed to traumadaveloped PTSD and those who did not
develop PTSD (24). This and othmrst hocexplanations should be considered with caution,
however, because the difference between the datiibin accuracy of PTSD vs. TEHC and PTSD

alone vs. PTSD+MDD was only of 6.1% (70.6% and 7&.ifespectively).

Findings demonstrate the clinical utility of themified biomarkers discriminating PTSD-
all from TEHC. Specifically, significant associat®were found between alteration in within ECN-
connectivity and PTSD and MDD symptoms, such tigttdr connectivity was associated with
more severe symptoms. The identified biomarkergwaéso capable of predicting treatment
response: lower within-ECN connectivity were asatad with greater PTSD symptom reduction.
This finding is consistent with a previous repatribnstrating decreased connectivity within the
ECN in patients with PTSD, potentially representiliginished emotion regulation abilities (i.e.,
inability to downregulate negative emotions) (#terestingly, thédentified biomarkers
discriminating PTSD alone from PTSD+MDD were ngnsficantly associated with
symptomatology and treatment response. One pot@o&hoc explanation is that the received
treatment focused on PTSD, and that treatment fioguwsy MDD may have yielded different

results.
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Several limitations should be noted. First, thespré study combined data from three
separate trials to increase sample size, with sbffegzences between the trials in their inclusion
and exclusion criteria, as well as differences letwscanners in spatial or temporal signal-to-noise
ratio. Additionally, we relied exclusively on difiences between DSM disorders, despite the
potential interest in within-disorder variance,luding categorization options that transcend the
boundaries of clinical diagnosis. Future studiesuthimplement unsupervised machine learning
approaches that can complement the current findiggietermining the extent to which the
biomarkers identified here for PTSD+MDD and PTSP iadeed those that create distinct
subpopulations of patients. This could determinetiver the identified data-driven biotypes of
homogeneous patterns of dysfunctional connectiigych those found in the present study. Future
studies with larger samples should also exploreafiseciation between the different clusters of
PTSD symptoms and the identified resting-stateufeat Finally, it should be noted that because a

trauma-unexposed subgroup was not included, tleetedf trauma exposure could not be tested.

These caveats notwithstanding, the current findsuggest that unique sets of brain-based
biomarkers differentiate between PTSD (with anchaiit comorbid MDD) and TEHC, as well as
between PTSD alone and PTSD+MDD. Certain connégtatierations in the PTSD+MDD
comorbid population vs. PTSD alone may explain mststencies between previous studies that
enrolled diverse participant populations. The pmefiadings suggest that brain function
abnormalities observed in PTSD+MDD vs. PTSD alomeénd) fMRI resting state were those
related to cortical-limbic dysregulation, which @ne basis of MDD etiology and describe altered
connections. The findings also stress the impoeafthe triple network in PTSD. The findings
further demonstrate the clinical utility of the rdigéied connectivity alterations, especially within
ECN, by demonstrating its associations with PTS® DD symptoms, and its ability to predict
subsequent treatment response. Taken togethdmdiregs support the potential of resting-state
fMRI to inform accurate future clinical assessmainpsychopathology in individuals at high risk of

developing PTSD following exposure to trauma, by dievelopment of objective biomarkers
19



indicative of the diagnostic heterogeneity of pmdthology and of treatment prognosis. Such
objective biomarkers may facilitate the early idiecation of heterogeneous subtypes of iliness.
Neuroimaging techniques hold the promise to aithéclinical assessment of individual
psychiatric patients, particularly in cases in vilhécclear differential diagnosis is difficult to
establish because of comorbidity. If these findiagsreplicated in future research, they can make
an important contribution to accurate diagnosis laglg identify precise targets for maximally

efficient treatment of PTSD+MDD and PTSD alone.
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Table 1. Demographic and clinical characteristicthe three groups

N

Gender, N (%)

Male
Female
Race, N (%)
Caucasian

African-American

Hispanic
Others

Age, mean years (SD)
HAM-D, mean (SD)
Total CAPS, mean (SD)

TEHC
76

36 (47.36%)
40 (52.64%)

21 (27.63%)
23 (30.26%)
26 (34.21%)
6 (7.89%)
40.8 (15.8)
2.97 (3.5)
6.3 (6.8)

PTSD-alone
51

29 (56.86%)
22 (43.14%)

12 (23.52%)
27 (52.94%)
0 (0%)

12 (23.52%)
40.6 (13.8)
12.8 (6.2)
56.8 (23.5)

PTSD+MDD
52

29 (55.76%)
23 (44.24%)

17 (32.69%)
22 (42.30%)
5 (9.61%)

8 (15.38%)
43.9 (14.7)
18.7 (6.1)
57.2 (28.9)

21



Table 2: Abbreviation of network names

Coordinateq

Network Seed names Abbreviatig rtx,y,z)
T;ttworks.Executlve Control.Lateral prefrontal CWHGECN.LPFCI 43.33.28
Networkg. Executive Control.Lateral prefrontal ECN.LPFCr | 41.38.30

ECN cortex Right . . .
Teefttworks. Executive Control.Posterior parietal ernt ECN.PPCI 46,-58,49
giegtmorks. Executive Control.Posterior parietal ernt ECN.PPCr | 52.-52.45
Networks.Salience.Anterior Cingulate Cortex SN.ACC | 0,22,35
Networks.Salience.Alnsula Left SN.Insulal -44,13,1
Networks.Salience.Alnsula Right SN.Insulat 47,14,0
Networks.Salience.Rostral Prefrontal Left SN.RPF(QI-32,45,27
oN Networks.Salience.Rostral Prefrontal Right SN.PRF(C 32,46,27
Networks.Salience.Supramarginal gyrus Left SN.SMGJ -60,-39,31
Networks.Salience.Supramarginal gyrus Right SN.SMGr62,-35,32
Atlas.Amygdala AMG +23,-4,-18
Atlas.Basolateral amygdala BLA +27,-7,-10
Atlas.Central medial amygdala CMA +23,-6,-20
Networks.DefaultMode.MPFC DMN.mPFC 1,55,-3
Networks.DefaultMode.lateral parietal Left DMN.LPI | -39,-77,33
Networks.DefaultMode.lateral parietal Right DMN.LRr| 47,-67,29
DMN | Networks.DefaultMode.Posterior Cingulate Cortex DMNC | 1,-61,38
Atlas.Anterior hippocampus HIPA +30,-15,-18
Atlas.Posterior hippocampus HIPP +29,-38,2
Atlas.Precuneus Cortex Precuneug 0,-65,41
8GN Atlas.Nucleus Accumbens NAcc 10,12,-7
Atlas.Thalamus THA +10,-17,9
Networks.DorsalAttention.Frontal eye fields Left NAEFI -27,-9,64
DAN Networks.DorsalAttention.Frontal eye fields Right| AN.FEFr | 30,-6,64
Networks.DorsalAttention.Intraparietal sulcus Left| DAN.IPSI -39,-43,52
Networks.DorsalAttention.Intraparietal sulcus RightDAN.IPSr 39,-42,54
Atlas.Superior Frontal Gyrus Right SFGr 16,18,61
Atlas.Superior Frontal Gyrus Left SFGI -16,18,61
PFN | Atlas.Middle Frontal Gyrus Right MidFGr 43,18,45
Atlas.Middle Frontal Gyrus Left MidFGI -43,18,45
Atlas.Inferior Frontal Gyrus, pars triangularis Rig | IFGtrir 46,27,27
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Atlas.Inferior Frontal Gyrus, pars triangularis tef | IFGtril -46,27,27
Atlas.Inferior Frontal Gyrus, pars opercularis Righ| IFGoperr 54,16,19
Atlas.Inferior Frontal Gyrus, pars opercularis Left | IFGoperl -54,16,19
Atlas.Frontal Pole Right FPr 31,59,13
Atlas.Frontal Pole Left FPI -31,59,13
Atlas.Subcallosal Cortex SubCalC | 0,21,-13
Atlas.Frontal Orbital Cortex Right OFCr 32,24,-15
Atlas.Frontal Orbital Cortex Left OFCI -32,24,-15
Networks.SensoriMotor.Lateral Left SMN.LI -55,-19,2
SMN | Networks.SensoriMotor.Lateral Right SMN.Lr 56,-19,2
Networks.SensoriMotor.Superior SMN.S 0,-31,67
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Figure 1. The most discriminative networks from differentitiPTSD-all from TEHC.Purple:
TEHC>PTSD, blue: TEHC<PTSD. The figure represemsconnectogram of the most
discriminative multivariate features (spatial funotl connectivity). The abbreviations are listed i
Table 1.

Figure 2. The most discriminative networks from differetitig PTSD-alone from PTSD-MDD.
Purple: PTSD-alone>PTSD-MDD, blue: PTSD-alone<PT8DP. The figure represents the
connectogram of the most discriminative multivaitdatures (spatial functional connectivity). The
abbreviations are listed in Table 1.
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