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INTRODUCTION

Cognitive training efficacy is controversial. Although many recent studies indicate that
cognitive training shows merit, others fail to demonstrate its efficacy. These inconsistent findings
may at least partly result from differences in individuals’ ability to benefit from cognitive training
in general, and from specific training types in particular. Consistent with the move toward
personalized medicine, we propose using machine learning approaches to help optimize cognitive
training gains.

COGNITIVE TRAINING: STATE-OF-THE-ART FINDINGS AND
DEBATES

Cognitive training targets neurobiological mechanisms underlying emotional and cognitive
functions. Indeed, Siegle et al. (2007) suggested that cognitive training can significantly improve
mood, daily functioning, and cognitive domains. In recent years, various types of cognitive training
have been researched. Frequently researched training types include cognitive bias modification
(CBM) aims to modify cognitive processes such as interpretations and attention, making these
more adaptive and accommodating to real-life demands (Hallion and Ruscio, 2011); inhibitory
training seeks to improve inhibitory control and other executive processes, thus helping regulate
behavior and emotion (Cohen et al., 2016; Koster et al., 2017); working memory training targets
attentional resources, seeking to increase cognitive abilities by improving working memory
capacities (Melby-Lervåg and Hulme, 2013). All these types demonstrated major potential in
improving psychopathological symptoms or enhancing cognitive functions (Jaeggi et al., 2008;
Hakamata et al., 2010).

Despite the accumulating body of evidence suggesting that cognitive training is a promising
research path with major clinical potential, questions remain regarding its efficacy, and
generalizability. Recent meta-analyses further corroborate this (for a discussion, see Mogg et al.,
2017; Okon-Singer, 2018). For example, several research groups tested CBM studies using
meta-analyses. Hakamata et al. (2010) analyzed twelve studies (comprising 467 participants from
an anxious population), reporting positive moderate effects of training on anxiety symptom
improvement. Yet two other meta-analyses focusing on both anxiety and depression (49 and
45 studies, respectively) demonstrated small effect sizes and warned of possible publication
bias (Hallion and Ruscio, 2011; Cristea et al., 2015). These inconsistent results raise important
questions about training efficacy. Several factors have been suggested as potential sources of
this variability in effect size, including differences in inclusion criteria and quality of the studies
included (Cristea et al., 2015).
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As in the CBM literature, meta-analyses of working memory
training also yielded divergent results. Au et al. (2015) analyzed
twenty working memory training studies comprising samples
of healthy adults and reported small positive effects of training
on fluid intelligence. The authors suggested that the small
effect size underestimates the actual training benefits and
may result from methodological shortcomings and sample
characteristics, stating that “it is becoming very clear to us
that training on working memory with the goal of trying to
increase fluid intelligence holds much promise” (p. 375). Yet
two other meta-analyses of working memory (87 and 47 studies,
respectively) described specific improvements only in the trained
domain (i.e., near transfer benefits) and few generalization
effects in other cognitive domains (Schwaighofer et al., 2015;
Melby-Lervåg et al., 2016). As with CBM, these investigations
did not include exactly the same set of studies, making it
difficult to infer the reason for the discrepancies. Nevertheless,
potential factors contributing to variability in intervention
efficacy include differences in methodology and inclusion
criteria (Melby-Lervåg et al., 2016).

Some scholars suggested that the inconsistent results seen
across types of training may be result from the high variability
in training features, such as dose, design type, training type,
and type of control groups (Karbach and Verhaeghen, 2014).
For example, some studies suggest that only active control
groups should be used and that using untreated controls is
futile (Melby-Lervåg et al., 2016), while others discovered no
significant difference between active and passive control groups
(Schwaighofer et al., 2015;Weicker et al., 2016). Researchers have
also suggested that the type of activity assigned to the active
control group (e.g., adaptive or non-adaptive) may influence
effect sizes (Weicker et al., 2016). Adaptive control activity
may lead to underestimation of training benefits, while non-
adaptive control activity may yield overestimation (von Bastian
and Oberauer, 2014).

Training duration has also been raised as a potential source
of variability. Weicker et al. (2016) suggested that the number
of training sessions (but not overall training hours) is positively
related to training efficacy in a brain injured sample. While
only studies with more than 20 sessions demonstrated a long-
lasting effect. In a highly influential working memory paper,
Jaeggi et al. (2008) compared different numbers of training
sessions (8–19). Outcomes demonstrated a dose-dependency
effect: the more training sessions participants completed, the
greater the “far transfer” improvements. In contrast, in a 2014
meta-analytical review Karbach and Verhaeghen reported no
dose–dependency, as overall training time did not predict
training effects. This is somewhat consistent with the findings
of Lampit et al. (2014) meta-analysis, which indicated that
only three or fewer training sessions per week were beneficial
in training healthy older adults in different types of cognitive
tasks. Furthermore, even time gaps between training sessions
when the overall number of sessions is fixed may be influential.
A study that specifically tested the optimal intensity level of
working memory training revealed that distributed training
(16 sessions in 8 weeks) was more beneficial than high
intensity training (16 sessions in 4 weeks) (Penner et al.,

2012). In sum, literature reviews maintain that this large
variability in training hampers attempts to evaluate the findings
(Koster et al., 2017; Mogg et al., 2017).

So far, the majority of studies in the field of cognitive
training have been concerned mainly with establishing the
average effectiveness of various training methods, with studies
based on combined samples comprising individuals who profited
from training and those who did not. Therefore, the samples’
heterogeneity might be too high to evaluate efficacy for the
“average individual” in each sample. We contend that focusing
on the average individual contributes to the inconsistent
findings, as is also the case with other interventions aimed
at improving mental health (Zilcha-Mano, 2018). We argue
that the inconsistent findings and large heterogeneity in studies
evaluating cognitive training efficacy do not constitute interfering
noise but rather provide important information that can guide
us in training selection. In addition to selecting the optimal
training for each individual, achieving maximum efficacy also
requires adapting the selected training to each individual’s
characteristics and needs (Zilcha-Mano, 2018). In line with this
notion, training games studies (i.e., online training platforms
displayed in a game-like format) showcased different methods
which personalized cognitive training by (a) selecting the type
of training according to a baseline cognitive strengths and
weaknesses evaluation or the intent of the trainee, and (b)
adapting the ongoing training according to the individual’s
performance (Shatil et al., 2010; Peretz et al., 2011; Hardy
et al., 2015). Until now, however, training personalization
was made by pre-exist defined criteria and rationale (i.e.,
individual’s weaknesses and strengths, individual’s personal
preference). Additional method for personalization, that is
becoming increasingly popular in recent years, is data-driven
personalization implemented by machine learning algorithms
(Cohen and DeRubeis, 2018).

The observed variation in efficacy found in cognitive training
studies may serve as a rich source of information to facilitate
both intervention selection and intervention adaptation—the
two central approaches in personalized medicine (Cohen and
DeRubeis, 2018). Intervention selection seeks to optimize
intervention efficacy by identifying the most promising type
of intervention for a given individual based on as many
pre-training characteristics as possible (e.g., age, personality
traits, cognitive abilities). Machine learning approaches are
especially suitable for such identification because they enable
us to choose the most critical items for guiding treatment
selection without relying on specific theory or rationale. In
searching for a single patient characteristic that guides training
selection, most approaches treat all other variables as noise.
It is more intuitive, however, to hypothesize that no single
factor is as important in identifying the optimal training for an
individual as a set of interrelated factors. Traditional approaches
to subgroup analysis, which tests each factor as a separate
hypothesis, can lead to erroneous conclusions due to multiple
comparisons (inflated type I errors), model misspecification, and
multicollinearity. Findings may also be affected by publication
bias because statistically significant moderators have a better
chance of being reported in the literature. Machine learning
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FIGURE 1 | Flow diagram of personalized cognitive training process.

approaches make it feasible to identify the best set of patient
characteristics to guide intervention and training selection
(Cohen and DeRubeis, 2018; Zilcha-Mano et al., 2018). With
that said, given the flexibility of methods like decision tree
analyses, there is a risk of overfitting that reduces validity
for inference out of sample, such that the model will fit
specifically the sample on which it was built and may be therefore
unlikely to be generalizable in an independent application
(Ioannidis, 2005; Open Science Collaboration, 2015; Cohen
and DeRubeis, 2018). Thus, it is important to test out-of-
sample prediction, either on a different sample or a sub-sample
of the original sample on which the model was not built
(e.g., cross-validation).

An example of treatment selection from the field of
antidepressant medication (ADM) demonstrates the utility of
this approach. Current ADM treatments are ineffective for
up to half the patients, despite much variability in patient
response to treatments (Cipriani et al., 2018). Researchers are
beginning to realize the benefits of implementing machine
learning approaches in selecting the most effective treatment for
each individual. Using the gradient boosting machine (GBM)
approach, Chekroud et al. (2016) identified 25 variables as most
important in predicting treatment efficacy and were able to
improve treatment efficacy in 64% of responders to medication—
a 14% increase.

Whereas, training selection affects pre-treatment decision-
making, training adaptation focuses on continuously adapting
the training to the individual (see Figure 1). A patient’s baseline
characteristics (e.g., age, personality traits, cognitive abilities)
and individual training performance trajectory can be used
to tailor the training parameters (training type, time gaps
between sessions, number of sessions, overall training hours)

to achieve optimal performance. Collecting information from
a sample of patients with similar baseline characteristics that
underwent the same intervention yields an expected trajectory.
Deviations from this expected trajectory act as warning signs
and can help adapt the training parameters to the individual’s
needs (Rubel and Lutz, 2017).

An example of treatment adaptation comes from the field of
psychotherapy research, where a common treatment adaptation
method involves providing therapists with feedback on their
patients’ progress. This method was developed to address the
problem that many therapists are not sufficiently aware of
their patients’ progress. While many believe they are able
to identify when their patients are progressing as expected
and when not, in practice this may not be true (Hannan
et al., 2005). Many studies have demonstrated the utility of
giving therapists feedback regarding their patients’ progress
(Lambert et al., 2001; Probst et al., 2014). Shimokawa et al.
(2010) found that although some patients continue improving
and benefitting from therapy (on-track patients—OT), others
seem to deviate from this positive trajectory (not-on-track
patients—NOT). These studies provided clinicians feedback on
their patients’ state so they could better adapt their therapy
to the patients’ needs. This in turn had a positive effect on
treatment outcomes in general, especially outcomes for NOT
patients, to the point of preventing treatment failure. These
treatment adaptation methods have recently evolved to include
implementations of the nearest neighbor machine learning
approach originating in avalanche research (Brabec and Meister,
2001), as well as other similar approaches to better predict
an individual’s optimal trajectory and identify deviations from
it (Rubel et al., in press).

Machine learning approaches may thus be beneficial in the
efforts of progressing toward personalized cognitive training.
The inconsistencies between studies in terms of the efficacy of
CBM, inhibitory training, and working memory training can
serve as a rich and varied source to guide the selection and
adaptation of effective personalized cognitive training. In this
way, general open questions such as optimal training duration
and time gaps between sessions will be replaced with specific
questions about the training parameters most effective for
each individual.
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